Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrap Methods in a Class of Non - Linear Regression Models

Dalam kertas ini, prestasi ralat piawai bootstrap bagi anggaran berpemberat MM (WMM) dibandingkan dengan ralat piawai Monte Carlo dan ralat piawai Berasimptot. Sifat-sifat selang keyakinan bootstrap bagi anggaran berpemberat WMM seperti 'Percentile' (PB), 'Bias-corrected Percentile' (BCP), 'Bias and Accelerated' (BC.), 'Studentzed Percentile' (SPB) dan 'Symmetric' (SB) te1ah diperiksa dan diban...

متن کامل

A new approach to bootstrap inference in functional coefficient models

We introduce a new, factor based bootstrap approach which is robust under heteroskedastic error terms for inference in functional coefficient models. Modeling the functional coefficient parametrically, the bootstrap approximation of a test statistic used for inference on parameter invariance is shown to hold asymptotically. In simulation studies, the factor based bootstrap inference outperforms...

متن کامل

Dynamic Random Coefficient Models A Note on Covariance Stationarity Conditions for Dynamic Random Coefficient Models

In this note we look at sufficient conditions for stationarity of a simple random coefficient model and find that this model is guaranteed to be stationary under strict conditions. JEL codes: C22

متن کامل

On First and Second Order Stationarity of Random Coefficient Models

We give conditions for first and second order stationarity of mixture autoregressive processes and discuss related, sometimes confusing, results for such models. We obtain a simple condition for positive definiteness of the solution of a generalisation of the Stein’s equation with semidefinite right-hand side and apply it to second order stationarity. The said condition may be of independent in...

متن کامل

Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap

In regression models, appropriate bootstrap methods for inference robust to heteroskedasticity of unknown form are the wild bootstrap and the pairs bootstrap. The finite sample performance of a heteroskedastic-robust test is investigated with Monte Carlo experiments. The simulation results suggest that one specific version of the wild bootstrap outperforms the other versions of the wild bootstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Spatial Statistics

سال: 2017

ISSN: 2211-6753

DOI: 10.1016/j.spasta.2017.07.006